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Abstract—The growing adoption of cloud computing raises
pressing concerns about trust and data privacy. Trusted Exe-
cution Environments (TEEs) have been proposed as promising
solutions that implement strong access control and transparent
memory encryption within the CPU. While initial TEEs, like
Intel SGX, were constrained to small isolated memory regions,
the trend is now to protect full virtual machines, e.g., with
AMD SEV-SNP, Intel TDX, and Arm CCA. In this paper, we
challenge the trust assumptions underlying scaled-up memory
encryption and show that an attacker with brief physical access
to the embedded SPD chip can cause aliasing in the physical
address space, circumventing CPU access control mechanisms.

We devise a practical, low-cost setup to create aliases in
DDR4 and DDR5 memory modules, breaking the newly intro-
duced integrity guarantees of AMD SEV-SNP. This includes the
ability to manipulate memory mappings and corrupt or replay
ciphertext, culminating in a devastating end-to-end attack
that compromises SEV-SNP’s attestation feature. Furthermore,
we investigate the issue for other TEEs, demonstrating fine-
grained, noiseless write-pattern leakage for classic Intel SGX,
while finding that Scalable SGX and TDX employ dedicated
alias detection, preventing our attacks at present. In conclusion,
our findings dismantle security guarantees in the SEV-SNP
ecosystem, necessitating AMD firmware patches, and nuance
DRAM trust assumptions for scalable TEE designs.

1. Introduction

Cloud computing has become an important paradigm
that takes advantage of the economy of scale by sharing
platform resources among mutually distrusting tenants. Tra-
ditionally, a privileged hypervisor software layer orches-
trates and isolates different guest Virtual Machines (VMs).
However, in this paradigm, cloud users must assume the
hypervisor to be free from exploitable vulnerabilities, as
well as trust the cloud service provider’s administrators, staff
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with physical access, and local law enforcement. In response
to these concerns, Trusted Execution Environments (TEEs)
have been developed, including AMD’s Secure Encrypted
Virtualization (SEV) [19], Intel’s Software Guard Exten-
sions (SGX) [31], [57] and Trusted Domain Extensions
(TDX) [34], and Arm’s Confidential Compute Architecture
(CCA) [6]. TEEs aim to facilitate private computations even
in the presence of an untrusted hypervisor, guarding against
both privileged software-level and hardware-level attacks.

To this end, TEEs implement strong, hardware-enforced
access control mechanisms to protect data in use within the
trusted CPU package while transparently encrypting all data
before writing it to untrusted off-chip DRAM. Therefore,
TEEs safeguard data confidentiality against advanced phys-
ical adversaries employing cold boot attacks [84] or DRAM
interposers [49]. Initial TEE designs, like Intel SGX, priori-
tized additional strong cryptographic integrity and freshness
protection to thwart data modification and replay attacks.
However, ensuring freshness requires secure on-chip storage
for the root of the integrity tree, which does not scale
effectively with larger memory sizes. Consequently, these
initial designs are limited to a relatively small memory
region (i.e., 128 or 256 MB) [26]. A clear industry shift, ex-
emplified by Scalable SGX, TDX, SEV, and CCA, has since
extended protection to full VMs, thereby scaling memory
encryption to encompass the entire DRAM. However, this
expansion may come at the cost of theoretically reducing
the strength of cryptographic integrity guarantees against
physical adversaries [31].

While it has been established that data encryption cannot
conceal address access patterns [18], [49], and scaling up
memory encryption may introduce powerful ciphertext side
channels [50], [53] in code that is otherwise constant time,
no practical integrity breaches have been demonstrated to
date. One reason for this is that the cost of such advanced
physical attacks is considered to be exceedingly high. For
instance, the sole previous hardware attack that managed
to extract access patterns from SGX’s memory encryption
engine required a prohibitive investment of $170,000 for
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a DDR4 DRAM interposer [49]. It is worth noting that
this interposer requires continuous physical access and may
not even be fast enough to manipulate or replay data, let
alone target more recent DDR5 technologies. Thus, in this
paper, we analyze the remaining DRAM trust assumptions,
considering the following fundamental questions:

Can the memory subsystem, especially DRAM modules, be
manipulated to break integrity protections in scalable, new-
generation TEE designs? Are these attacks viable for low-
cost adversaries with minimal or no physical access?

Exploring a new research direction, we focus our at-
tention on the memory subsystem’s initialization process,
which is conducted at boot time by BIOS system software in
conjunction with DRAM module configuration data, both of
which are explicitly distrusted from the perspective of CPU-
based TEEs. Specifically, we introduce a novel, platform-
agnostic technique to double the apparent size of DDR4
and DRR5 memory modules by unlocking and manipulating
the onboard Serial Presence Detect (SPD) chip, which pro-
vides a standardized method for reporting physical memory
properties to the BIOS. We dub such manipulated memory
modules BadRAM. Notably, our practical, low-cost SPD
manipulation setup requires only brief, one-time physical
access and can be built for approximately $10. Moreover,
we find that certain DRAM vendors incidentally leave SPD
unlocked, potentially enabling software-only attacks without
any need for physical access.

In our attacks, we double the apparent size of the Dual
Inline Memory Module (DIMM) installed in the system to
trick the CPU’s memory controller into using additional
“ghost” addressing bits. These addressing bits will be un-
used within the virtually enlarged DIMM, creating an inter-
esting aliasing effect where two different physical addresses
now refer to the same DRAM location. We develop a
practical reverse-engineering method to locate these aliases
and show that they can be exploited to bypass access control
restrictions, including those implemented by TEEs. Most
impactful, in the case of AMD SEV-SNP, we show that
BadRAM attackers can tamper with or replay ciphertexts
and even manipulate the crucial reverse map table data
structure, thereby re-introducing potent page-remapping at-
tacks [60], [61], [62] that initially prompted the development
of SEV-SNP. Building upon these primitives, we construct a
comprehensive, end-to-end attack that allows replaying the
cryptographic launch digest used in SEV-SNP’s attestation
process. We experimentally demonstrate that this capability
permits the launching of arbitrarily modified VM images
without altering their attestation report, consequently under-
mining all trust in the SEV-SNP ecosystem.

Next, we analyze the effect of our BadRAM aliasing
primitive on the security of other popular TEEs beyond
AMD SEV-SNP. We find that “classic” Intel SGX incor-
porates suitable cryptographic integrity protections that ef-
fectively thwart ciphertext replay or corruption attacks but
still allow BadRAM adversaries to discern precise, noiseless
write access patterns at a fraction of the cost of prior
work [49]. Conversely, Scalable SGX and TDX include

a trusted code module that explicitly checks the physical
memory space for aliases during boot time, preventing our
attacks at present. Following our responsible disclosure,
AMD plans to introduce a similar countermeasure through
a firmware update for SEV-SNP.

Contributions. Our main contributions are as follows:

• We present a novel physical memory aliasing primi-
tive based on malicious SPD data that bypasses TEE-
imposed access-control restrictions at low cost and
with one-time physical access.

• We show how malicious SPD configurations break
AMD SEV-SNP’s memory integrity feature, allow-
ing to remap pages and corrupt or replay ciphertexts.

• We present an end-to-end attack on SEV-SNP’s at-
testation, allowing arbitrary changes to the VM.

• We demonstrate low-cost, fine-grained, noiseless
write-pattern leakage for classic Intel SGX.

• We discuss existing countermeasures as well as im-
provements to harden TEEs against BadRAM.

Responsible Disclosure. We disclosed the SPD alias-
ing attacks with proof-of-concepts to break SEV-SNP to
AMD on February 26, 2024. AMD acknowledged our
findings, which they are tracking under CVE-2024-21944
and AMD-SB-3015, and requested an embargo until De-
cember 10, 2024. Notably, AMD’s official CVSS assess-
ment (AV:L/AC:H/PR:H/UI:N/S:C/C:N/I:H/A:N) acknowledges
that BadRAM attacks can be mounted by local, software-
only attackers without physical access (e.g., via SSH). For
the issue in classic Intel SGX, we did not deem disclosure
necessary at this point, as the underlying problem of write-
pattern leakage has been demonstrated before. To mitigate
our findings, AMD will interactively check the DRAM
configuration using “AMD Secure Boot loader firmware”.
Appendix A contains AMD’s verbatim response.

Open Science. To ensure the reproducibility of our results,
and to enable future science on memory-aliasing attacks and
defenses, we open-source our practical SPD tools and eval-
uation scenarios at https://github.com/badramattack/badram.

2. Background

2.1. AMD Secure Encrypted Virtualization

AMD’s Secure Encrypted Virtualization (SEV) [19] is
a TEE that protects virtual machines against privileged
software attackers, such as a malicious hypervisor. The
intended use case is to run VMs in the cloud without
needing to trust the cloud service provider. SEV uses a
combination of access rights and memory encryption to
protect the VM’s data. Before writing data to DRAM, it is
encrypted with AES XOR-Encrypt-XOR (AES-XEX) using
a tweak value derived from the physical address [19], [66],
[80]. The encryption keys are managed by the AMD Secure
Processor (SP), which forms the hardware root of trust
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for the system. The SP offers an API to the hypervisor
to manage encrypted VMs. To protect the VM’s plaintext
data inside the system-on-chip, e.g., while it is in the cache,
the data is tagged with a VM-specific identifier to restrict
access to the corresponding VM. The updated version SEV
Encrypted State (SEV-ES) [47] added encryption to the
previously unprotected VM register file. The latest version,
SEV Secure Nested Paging (SEV-SNP) [3], [4], mainly adds
integrity protection to both the VM’s memory content and
its memory layout, preventing an attacker from writing to
an encrypted VM’s memory from software and restricting
their ability to remap the VM’s secure memory pages. Both
mechanisms are implemented via an additional, hardware-
managed data structure called the Reverse Map Table.

2.2. DRAM Organization

A DIMM consists of a number of SDRAM chips that
are grouped together into ranks. Each of these dies contains
grids of DRAM cells, consisting of a number of rows
and columns, which are grouped together into banks. Each
memory location within the DIMM is uniquely defined by its
rank, bank group, bank, column, and row. Multiple DIMMs
can be present in the system, organized into channels. Each
channel can be accessed in parallel.

Accessing a certain memory location first requires acti-
vating the corresponding row. As only one row can be open
at a time within a bank, switching between rows incurs a
performance penalty. The translation of physical address to
DRAM address bits, performed by the memory controller,
is, therefore, not a one-to-one mapping. For instance, the
channel, rank, and bank bits are typically obtained by XOR-
ing different physical address bits together [64], [76]. This
spreads consecutive addresses over different channels, ranks,
and banks, reducing the performance overhead.

2.3. Serial Presence Detect

The Serial Presence Detect (SPD) chip is a serial Elec-
trically Erasable Programmable Read-Only Memory (EEP-
ROM) part of a DIMM that contains the module’s config-
uration data. This data includes, for instance, the physical
properties of the DIMM (e.g., size, speed), as well as its
metadata (e.g., serial number, manufacturing date). The SPD
data encoding is standardized by JEDEC. On a high level,
the EEPROM is divided into four blocks for DDR4 and
16 blocks for DDR5. In DDR4, the base configuration and
end-user-programmable sections are stored in blocks 0 and
3, respectively, while in DDR5, they are stored in blocks
0–1 and 10–15.

Communication with the SPD chip takes place over
the System Management Bus (SMBus) for DDR4 and the
JEDEC Module Sideband Bus (SidebandBus) for DDR5.
These are two-wire interfaces based on I2C and I3C, re-
spectively. Upon boot, the BIOS reads out the EEPROM of
every connected DIMM to configure the system based on
the reported parameters. This interface can also be exposed

SPD

DIMM

1 Read SPD

2 Configure memory controller

BIOS

SMBus
SidebandBus

Figure 1. High level overview of the memory configuration steps performed
by the BIOS. An incorrect DIMM topology can be either the result of a
malicious SPD, or a malicious BIOS.

to software, allowing software to query the parameters of
the connected DRAM modules.

Write Protection. To protect against accidental overwrites,
each block can be optionally write protected. As per JEDEC
specification, this write protection must be reversible, though
doing so requires physical access to the DIMM. For DDR4,
reverting the write protection requires connecting I2C ad-
dressing pin SA0 to VHV (7–10 V) and issuing the Clear
all Write Protection (CWP) command [44]. For DDR5, the
protection status is stored in registers MR12 and MR13,
which can be modified by tying the HSA pin to ground [46].

JEDEC-compliant modules are required to protect
blocks 0–1 for DDR4 and 0–7 for DDR5. Additionally,
they must not set protection for the end-user-programmable
blocks, which are, for instance, used to specify user-defined
overclocking profiles through Intel XMP or AMD EXPO.

3. BadRAM Memory Aliasing Primitive

An adversary able to change the values of the SPD can
trick the system into assuming different DIMM properties
than those that are physically present. In this section, we
use this idea to build up a primitive that creates physical
memory aliases by making the DRAM appear larger than it
actually is. In Sections 4 and 5, we explore the implications
of this aliasing effect on TEE security.

To manipulate the reported DRAM size, the attacker
needs to interfere with the memory initialization. This ini-
tialization is performed by the BIOS, which configures the
memory controller based on the data reported by the SPD
chip, as shown in Figure 1. As BIOSes are proprietary, we
instead consider modifying parts of the SPD information to
perform a data-driven attack against a benign BIOS.

3.1. Attacker Model

For our attacks, we assume an attacker with (i) root
privileges on the target system and (ii) one-time physical
access to a DIMM module installed in the system. Assump-
tion (i), i.e., software root access, is the standard adversary
model in the TEE context and in principle also includes
arbitrary code execution in the BIOS. However, as BIOSes
are notoriously inaccessible to end users, we introduce
assumption (ii), recognizing that TEEs generally assert a
degree of protection against physical DRAM attacks. Intel
SGX and TDX explicitly consider the DRAM subsystem
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Figure 2. Raspberry Pi Pico setup to unlock and modify DDR4 and DDR5
SPDs.

untrusted [26], [36]. Similarly, AMD SEV-SNP considers
certain DRAM attacks, such as cold boot attacks, as part of
their threat model, while “on-line DRAM integrity attacks,
such as attacking the DDR bus while the VM is actively
running” are considered out of scope as they are deemed
“very complex and require a significant level of local access
and resources to perform” [3].

For our attacker model, we only require one-time phys-
ical access to manipulate the data on the DIMM’s SPD
chip. This could, for example, be performed by a malicious
employee at a cloud service provider or through a supply-
chain attack, without adding extra hardware to the system
or leaving physical traces. We also note that we encountered
off-the-shelf DRAM modules with disabled write protection,
cf. Table 1, where the SPD could be potentially overwritten
purely from software. Once the manipulated DIMM is in-
stalled, the attacker is no longer required to have physical
access to the targeted system and can carry out the subse-
quent steps remotely from software.

3.2. Modifying SPD Contents

Experimental Setup. To physically interface with the SPD
chip, we connected a standard Raspberry Pi Pico to the I2C
interface exposed on the DIMM, as shown in Figure 2. This
offers a direct connection to the EEPROM, enabling read
and write access, and allows to disable any potential write
protection. As the SPD lacks authentication measures, its
contents can be altered without detection by the system. This
has been used before to adjust the DIMM’s frequency [27],
[48], or to create counterfeit memory modules [72]. Note
that while DDR5 supports I3C, it remains backward compat-
ible with I2C and defaults to I2C on power on [46]. The total
setup cost to perform SPD modifications, which includes the
Raspberry Pi Pico and DDR sockets, is approximately $10.
Appendix B includes a full parts list.

DRAM Vendor Analysis. We analyzed several off-the-shelf
DDR4 and DDR5 modules, including RDIMMs, UDIMMs,

TABLE 1. WRITE PROTECTION AND ADDRESSING (HIGHLIGHTED) FOR
VARIOUS DIMMS. FULL VERSION IN APPENDIX (TABLES 7 AND 8).

Manufacturer Type

DDR4 WP0 WP1 WP2 WP3 Row Col.
Corsair1 UDIMM ✗ ✗ – – 15 10
Corsair2 UDIMM ✗ ✗ ✗ ✗ 16 10
Crucial1 SODIMM ✓ ✓ ✓ ✗ 16 10
Kingston1 RDIMM ✓ ✓ ✗ ✗ 16 10
Kingston2 RDIMM ✓ ✓ ✗ ✗ 17 10
Kingston3 RDIMM ✓ ✓ ✗ ✗ 17 10
Kingston4 UDIMM ✓ ✓ – – 16 10
Micron1 RDIMM ✓ ✓ ✓ ✗ 17 10
Micron2 RDIMM ✓ ✓ ✓ ✗ 18 10
Micron3 RDIMM ✓ ✓ – – 16 10
Micron4 RDIMM ✓ ✓ ✓ ✗ 17 10
Samsung1 UDIMM ✓ ✓ ✗ ✗ 16 10
Samsung2 SODIMM ✓ ✓ ✗ ✗ 16 10
SK hynix1 RDIMM ✓ ✓ ✗ ✗ 17 10
SK hynix2 RDIMM ✓ ✓ – – 17 10
SK hynix3 UDIMM ✓ ✓ ✗ ✗ 15 10
SK hynix4 UDIMM ✓ ✓ ✗ ✗ 16 10
SK hynix5 SODIMM ✓ ✓ ✗ ✗ 15 10

DDR5 MR12 MR13 Row Col.
Kingston5 RDIMM 0xff 0x3c 16 10
Kingston6 RDIMM 0xff 0x00 16 10
Kingston7 RDIMM 0xff 0x00 16 10
Samsung3 RDIMM 0xff 0x01 16 10
SK hynix6 RDIMM 0xff 0x01 16 10
SK hynix7 UDIMM 0xff 0x01 16 10

Write Protection Addressing

01234567

WP7 WP6 WP5 WP4 WP3 WP2 WP1 WP0MR12

WP15 WP14 WP13 WP12 WP11 WP10 WP9 WP8MR13

Figure 3. Encoding of MR12 and MR13 for DDR5 [46]. BadRAM SPD
modification attacks require bits 0 and 7 of MR12 to be clear.

and SODIMMs, as summarized in Table 1. Performing a
BadRAM attack requires modifications to block 0 for DDR4
and blocks 0 and 7 for DDR5 (as DDR5 stores the CRC in
a separate block). The protection of these blocks is defined
by WP0 for DDR4 and bits 0 and 7 of register MR12 for
DDR5 (cf. Figure 3).

We found that most, though not all, memory mod-
ules lock the base configuration by default, as required by
JEDEC, though they do not all set the remaining protection
bits equally. We experimentally verified the ability to re-
move this protection with physical access as per the JEDEC
specification. This operation can be performed entirely using
the Raspberry Pi, with DDR4 only requiring an additional
7–10 V source, such as a boost converter or a 9 V battery.
Notably, we found at least two off-the-shelf DDR4 DIMMs
(Corsair1 and Corsair2) that leave the base configuration
entirely unprotected, possibly exposing them to software-
only BadRAM attacks. In specific cases, this may even
lead to accidental corruption of the SPD, a known problem
for some motherboards [55]. However, as these particular
modules are UDIMMs, they are not compatible with our
test server systems.
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DRAM
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DIMM

Figure 4. An incorrect configuration of the memory controller can result in
unused address bits. Two addresses that only differ in the ghost bit alias to
the same physical location inside the DRAM memory as this bit is ignored.

3.3. Creating Memory Aliases

With the ability to modify the SPD data, we can change
the base configuration information of the DIMM. While not
changing the underlying physical properties of the DIMM,
this will change the properties as perceived by the host
system. For instance, we can change the addressing that
is used for the DIMM. The memory controller relies on
this information to construct its physical-to-DRAM address
mapping. This mapping depends, for instance, on the num-
ber of bits that are required to address each level of the
DIMM’s hierarchy [64], [76]. An incorrect configuration,
as reported by the SPD, can create an inconsistent memory
view between the CPU and DIMM. For instance, if the
SPD reports more addressing bits than are actually used by
the module, effectively increasing the size of the DIMM,
the CPU will accordingly incorporate these bits into its
mapping. However, since these “ghost” bits are not used
by the DIMM, they are effectively ignored, creating aliases
in the CPU’s memory view.

Concretely, we consider modifying the SPD to report
one additional address bit, not used by the DIMM. This
effectively doubles the apparent size of the module. From
the CPU’s perspective, an additional address line will be
driven, which is not connected to the DIMM and thus
ignored by the addressing logic on the DIMM. This dis-
crepancy in addressing between the CPU and DIMM results
in two DRAM addresses, which only differ in the unused
“ghost” bit, mapping to the same DRAM location, as shown
in Figure 4. These aliases are invisible to the memory
controller: from the CPU’s perspective, these are two distinct
addresses. As a result, they can bypass access control checks
based on physical addresses, for instance, in the context of
TEEs.

SPD Encoding. As mentioned before, the required infor-
mation to correctly address the DIMM is stored in the
SPD. For instance, byte 5 encodes the number of row and
column bits in use by the DIMM, as shown in Figure 5. To
introduce an additional DRAM address bit, we can modify

01234567

0 0 Row bits − 12 Column bits − 9DDR4

Column bits − 10 Row bits − 16DDR5

Figure 5. Encoding of byte 5 of the SPD’s content, representing the
SDRAM addressing [42], [45]. This byte is part of block 0 in the SPD.

TABLE 2. MAXIMAL DIMM CAPACITY SUSCEPTIBLE TO ROW-BASED
BADRAM ATTACKS.

Maximal DIMM Capacity

Ranks DDR4 DDR5

1 16 GB 32 GB
2 32 GB 64 GB
4 64 GB 128 GB
8 128 GB 256 GB

this byte to either increment the number of rows or columns.
This necessarily also requires a modification to the DRAM
density per die (byte 4, bits 0–3 for DDR4 and bits 0–4
for DDR5), which has to be updated to reflect the doubled
capacity due to the additional addressing bit. Finally, the
CRC bytes must be updated to match the modified content.

When booting a system containing a DIMM with a
modified SPD, we found that some BIOSes may cache the
SPD contents of the DIMM based on its serial number.
This is, for instance, the case in coreboot, an open-source
BIOS implementation [16, src/include/spd_cache.h].
The changes in the SPD may, therefore, not be applied if the
module was already part of the system before. Modifying
the serial number (bytes 325–328 for DDR4 or 517–520
for DDR5) simulates inserting a different module and thus
forces the system to re-read the modified addressing infor-
mation in the EEPROM. This behavior highlights that these
memory mapping manipulations could also be performed by
a malicious BIOS, which we discuss further in Section 6.1.

In our experiments, we opted to increment the number
of row address bits. These bits are typically mapped to
the highest physical address bits [64], [76], making unin-
tended aliases, which impact system stability, less likely.
Additionally, the column bits are typically combined in
linear functions to determine the channel, rank, and bank,
making the search for aliases more complicated. Assuming
common DIMM properties (i.e., a 64-bit interface, an 8 kB
row size, and 16 (32) banks for DDR4 (DDR5)), all single-
rank DIMMs with a capacity up to 16 GB for DDR4 and
32 GB for DDR5 will have at least one free row address bit.
This capacity increases with additional ranks; the maximal
capacity for DIMMs susceptible to row-based BadRAM
attacks for common rank configurations is given in Table 2.
In practice, however, this restriction does not significantly
limit the attack surface as servers typically have many
DIMM slots and only one modified DIMM is required for
our attacks.

Finding Memory Aliases. In contrast to the simple example
from the previous paragraph, physical address bits need not
map one-to-one to DRAM address bits. The ghost bit, there-
fore, does not necessarily correspond to a single physical
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Algorithm 1 Search alias for physical address A.
1: for each page-aligned physical address B ̸= A do
2: m1,m2 ← 64 random bytes;
3: flush (B) ; write mem (A,m1) ; flush (A)
4: g1 ← read mem(B); flush (B)
5: write mem (A,m2) ; flush (A)
6: g2 ← read mem(B)
7: if m1 ⊕m2 = g1 ⊕ g2 then
8: return B
9: end if

10: end for

address bit. Thus, finding two aliasing addresses may require
scanning the entire physical memory space. However, this
step needs to be done only once per memory configuration,
as the mapping is deterministic. On a high level, we can
search for the alias of address A by writing a marker value
to it and scanning the remaining memory for another ap-
pearance of this marker. The process is slightly complicated
by memory scrambling [84], where the memory controller
XORs a randomized scramble pattern to the payload data
before writing it to DRAM to even out the electrical load
on the memory bus. As the scramble pattern is based on the
physical address, a different pattern will be applied when
reading from address A and its alias, hiding that they are,
in fact, containing the same marker value.

To find the aliased address for A, we use the approach
shown in Algorithm 1. The flush operations are required
because there is no cache coherency for aliased physical
addresses. By comparing the XOR values on line 7, we
ensure that the effect of memory scrambling cancels out.
Note that for this one-time search, we temporarily disable
memory encryption features like AMD SME [5, §7.10] or
Intel TME-MK [33], as they encrypt the memory contents
using AES with an address-based tweak. This is no longer
a linear operation, and thus cannot be canceled out by an
XOR-based comparison. For both SME and TME-MK, the
encryption status can be configured with page granularity at
runtime or for the whole system via BIOS settings. Some
mainboards also allow memory scrambling to be disabled
in the BIOS, simplifying the alias scanning to just looking
for a second appearance of the marker value.

Evaluation. We evaluated our memory aliasing primitive
on three different systems, which we refer to as AMD1,
Intel1, and Intel2 (cf. Table 3). On all systems, we modified
the SPD to report one additional row and thus twice the
actual memory size. To ensure stable system operation, we
must prevent the kernel and all applications from using
the introduced ghost memory regions to avoid accidental
overwrites. We achieve this via the Linux kernel command
line parameter memmap=nn$ss, which marks the memory
region ss to ss+nn as reserved, preventing the system from
using it [54]. On all systems, booting with the upper half
of the memory blocked by memmap resulted in a largely
stable system. Our alias search implementation consists of
a user space application implementing the core logic in

TABLE 3. OVERVIEW OF EVALUATION SYSTEMS USED IN THIS PAPER.

System TEE Mainboard CPU DIMM(s) DRAM

AMD1 SEV-SNP ASRock ROMED8-2T EPYC 7313P 1×Micron1 DDR4
Intel1 Classic SGX Intel NUC7i3BNH i3-7100U 1×Crucial1 DDR4
Intel2 Scalable SGX Supermicro X12DPi-NT6 Xeon 6330 16×Micron3 DDR4
Intel3 TDX ProLiant DL320 Gen11 Xeon 5515+ 8×Kingston7 DDR5

Algorithm 1, assisted by a small Linux kernel module that
enables direct access to arbitrary physical addresses.

The alias search revealed that on the two Intel sys-
tems, the ghost row address bit corresponded to a single
physical address bit. On Intel1, this bit corresponded to the
most significant physical address bit, whereas for Intel2—
a dual-socket system—it corresponded to the second most
significant bit, with the most significant one specifying the
socket. On AMD1, on the other hand, the memory was
fractured into multiple chunks, with each chunk having a
separate aliasing function. Furthermore, we observed that
the exact layout was influenced by the memory regions
blocked with memmap. Nonetheless, the system was stable
enough to successfully carry out the attacks on SEV-SNP
that are described in Section 4. We suspect that the address
space fracturing could be related to “memory hoisting” [2],
[41], which allows applying offset-based modifications to
the way physical addresses map to DRAM.

4. Breaking AMD SEV-SNP

In this section, we show how the BadRAM primitive
can be used to break SEV-SNP’s newly introduced central
memory integrity claim: “[. . .] if a VM is able to read a
private (encrypted) page of memory, it must always read
the value it last wrote” [3]. To this end, SEV-SNP im-
poses additional restrictions on the untrusted hypervisor
to protect the integrity of the VM’s memory layout and
prohibit writing to its encrypted pages. In this section, we
first explain how these features are implemented and then
show how the protection can be broken using the BadRAM
primitive. Finally, we demonstrate an end-to-end attack that
breaks SEV-SNP’s attestation, allowing an attacker to make
arbitrary changes to a protected VM without changing its
attestation report, breaking all trust in SEV-SNP.

With virtualization, there are two sets of page tables:
the regular page tables used by the unenlightened OS inside
the VM, and the Nested Page Tables (NPT) managed by
the hypervisor. The addresses used by the VM are called
Guest Virtual and Guest Physical Addresses (GPAs). The
NPT is used to translate guest physical addresses to actual
Host Physical Addresses (HPAs). With SEV, the hypervisor
is in control of the NPT, allowing it to remap a GPA to a
different HPA or to map two GPAs to the same HPA.

SEV-SNP’s integrity features are implemented via the
newly introduced Reverse Map Table (RMP). The RMP
is a linear table that contains one entry for each HPA
page that should be assignable to SEV-SNP VMs. Each
RMP entry records various attributes. The most important
ones are whether the page is used by an SEV-SNP VM
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and, if so, the GPA at which the page is supposed to be
mapped within the VM. Following AMD’s nomenclature,
we will call pages used by SEV-SNP VMs guest-owned
and all other pages hypervisor-owned. The RMP has to
be allocated before architecturally enabling SEV-SNP, by
specifying its physically contiguous memory range via the
RMP_BASE and RMP_END MSRs [5, §15.26.4]. Afterward,
the hypervisor can no longer write to this memory region.
Instead, it has to use a newly introduced set of instructions
that grant it restricted access to the RMP. Thus, in contrast to
the NPT, the information in the RMP is trustworthy. In the
following, we show how we can use the BadRAM primitive
to break both the memory layout integrity and the memory
content integrity introduced by the RMP.

4.1. Breaking Memory Layout Integrity

Prior to SEV-SNP, there was no mechanism for a VM to
detect changes in the GPA to HPA mapping performed by
the hypervisor-controlled NPT. Morbitzer et al. exploited
this for their SEVered attacks [60], [61], [62], which use
the ability to swap the memory mapping of two pages in
conjunction with a service running inside the VM, to decrypt
arbitrary VM memory, inject hypervisor chosen plaintext
and execute arbitrary code in the VM.

To prevent these kinds of attacks, SEV-SNP consults
the RMP upon each page table walk caused by the VM
to verify the integrity of the GPA to HPA mapping. The
RMP assigns each guest-owned page a valid bit and an
expected GPA. When the hypervisor first assigns a page
to the SEV VM via the rmpupdate instruction or uses
one of the other instructions to update the page’s status, the
valid bit is reset to 0. When a VM accesses a page with the
valid bit set to 0, the VM is informed via a #VC exception,
allowing it to validate the page if it deems the potential
GPA change benign, e.g., the first time it accesses the page.
For the validation, it needs to use the pvalidate instruction,
which stores the current GPA of the page in the RMP and
sets the valid bit to 1. When a VM accesses a page with the
valid bit set to 1, where the expected GPA stored in the RMP
does not match the GPA in the NPT, the hardware aborts
the access and generates a nested page fault exception.

Using the BadRAM primitive, the hypervisor can cir-
cumvent the write protection of the RMP itself and, thus,
make arbitrary changes to the stored GPA values without
clearing the valid bit. Crucially, we find that the RMP’s
content is not encrypted. Thus, the hypervisor can directly
write to the RMP and does not have to resort to replaying
previously captured ciphertexts. As a result, the hypervisor
can trivially swap the GPA-to-HPA mapping of two pages,
by swapping both the GPA-to-HPA mapping in the NPT
and the expected GPA in the corresponding RMP entry, as
shown in Figure 6. This re-enables SEVered attacks [60],
[61], [62], which, in conjunction with a service running in
the VM, allow both decryption and encryption of SEV-SNP
VM memory as well as code execution. Note that, as each
GPA is inherently associated with exactly one RMP entry at
a time, the hypervisor still cannot map two GPAs to the same
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HPA2

NPT

GPA1

GPA2

RMPVerify
RMP[HPA] = GPA

VM Hypervisor Hardware

Figure 6. Mapping manipulation required for remapping attacks on SEV-
SNP. The hardware checks that the HPA, as translated by the NPT, matches
the expected GPA specified in the RMP. This enables the hardware to
detect malicious mapping changes through the hypervisor controlled NPT.
Thus, the attacker needs to change both mappings. The RMP manipulation
requires our BadRAM primitive. The figure shows the entries after the
swap has been performed.

HPA at the same time. However, such aliasing is not required
for the cited attacks. If desired, adversaries can use single-
stepping, e.g., SEV-Step [81], to precisely manipulate RMP
entries at a maximal, instruction-level temporal resolution.

Proof-of-Concept. We implemented an elementary proof-
of-concept on the AMD1 system, using a single BadRAM
memory module, showing that we can swap the mapping of
two protected VM addresses. For the implementation, we
modified the Linux kernel on the host system to provide
an API to manipulate NPT entries. In addition, we use our
previous kernel module for direct physical memory access
to parse the RMP and modify it through a BadRAM alias.

4.2. Breaking Memory Content Integrity

Safeguarding the integrity of encrypted memory content
in SEV-SNP is not enforced via cryptographic measures,
but solely relies on the RMP. If SEV-SNP is enabled, the
RMP is consulted for each memory write performed by the
hypervisor [5, Table 15-39]. If the targeted page is guest-
owned, the write attempt is blocked. Crucially, using the
BadRAM primitive, we can circumvent this RMP protection
by ensuring that the alias is hypervisor-owned. While the hy-
pervisor can now write to guest-owned pages, their content
is still encrypted with AES-XEX. As AES-XEX does not
offer integrity, the guest cannot detect if a ciphertext has
been manipulated. Instead, a modified ciphertext simply de-
crypts to a randomized value, i.e., it is not possible to make
controlled semantic changes to the plaintext. Nonetheless,
manipulating the ciphertext can be used as a capable fault
primitive, e.g., against cryptographic schemes [11].

Since AES-XEX does not offer freshness, the hypervisor
can also use the BadRAM primitive to replay previously
captured ciphertexts. The tweak value used for the XEX
mode depends on the HPA and boot-time randomness. Thus,
ciphertexts can only be replayed to the same physical mem-
ory address they were read from. Otherwise, the mismatch-
ing tweak values lead to a randomized, garbage plaintext,
similar to corrupting the ciphertext. As each SEV VM uses a
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different encryption key, ciphertexts can also not be replayed
across different SEV VMs.

Proof-of-Concept. We implemented an elementary proof-
of-concept on the AMD1 system, showing that we can
randomize the content of a memory buffer inside the VM
by modifying its aliased ciphertext from the hypervisor. To
this end, we modified the Linux kernel on the host system
to provide a convenient API for GPA-to-HPA translations.
In addition, we use our previous kernel module for direct
physical memory access to perform the modification through
the BadRAM alias of the targeted address.

4.3. End-to-End attack on SNP’s Attestation

In this section, we transition from integrity to confi-
dentiality by demonstrating how the replay attack prim-
itive discussed in the previous section can be leveraged
to compromise AMD’s crucial attestation feature, thereby
undermining all trust in the SEV-SNP ecosystem.

SEV-SNP Attestation. Following common TEE design pat-
terns, an SEV VM’s lifecycle is split into two major phases:

1) In GSTATE_LAUNCH, the hypervisor creates the
VM and prepares its memory content by using the
corresponding launch API functions of the Secure
Processor (SP), SEV’s hardware root-of-trust. First,
the hypervisor donates memory for the guest con-
text data structure to the SP. The hypervisor has
to mark the donated memory page as a firmware
page in the RMP, preventing future writes. Next, the
SP encrypts the donated memory using its memory
encryption key and initializes the guest context. The
guest context is the central data structure describing
the SEV VM. Among other information, the guest
context stores the launch digest, a cryptographic
hash representing both the initial memory content
and the initial memory layout of the VM.

2) Next, the initial memory content of the SEV
VM is loaded by the hypervisor via the
SNP_LAUNCH_UPDATE command offered by the
SP. This command encrypts the memory with
the VM’s memory encryption key, without reveal-
ing the key to the hypervisor. On each invoca-
tion, the SP updates the launch digest inside the
guest context accordingly. Eventually, the hyper-
visor uses the SNP_LAUNCH_FINISH command
to transition the VM into the GSTATE_RUNNING
state, which disables the launch commands API.
The GSTATE_RUNNING state marks the VM as
“runnable”, allowing the hypervisor to start the VM
via the VMRUN instruction.

There are two attestation mechanisms that can be used to
verify the computed launch digest. First, the guest owner can
prepare a so-called identity block (IdBlock), which, among
other information, contains the expected launch digest. The
IdBlock is an optional parameter that can be passed to the
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Figure 7. Online phase of the launch digest replay attack that breaks SEV-
SNP’s attestation. In step ➀ the correct image, together with a signed
representation of the expected launch digest, is transferred to the hypervisor.
In step ➁, the hypervisor modifies the requested VM image to contain a
backdoor. As a result, the launch digest after step ➂ does not match the
launch digest of the original image. However, in the offline phase (not
depicted), the hypervisor captured the ciphertext of the correct launch digest
using the BadRAM primitive, which it now replays in step ➃. As a result,
the launch digest again matches the expected value, passing the checks in
steps ➄ and ➅.

SNP_LAUNCH_FINISH command to make the SP check
the launch digest before marking the VM as runnable. The
second mechanism is more dynamic and allows the software
in the VM to request an attestation report from the SP
at runtime. The attestation report is signed by the SP and
contains all information that is relevant for the guest owner
to remotely verify the security of their running SEV-SNP
VM. The launch digest is at the core of the attestation report,
as it proves to the guest owner that only the expected code
and data have been loaded into the VM and that the memory
layout is as expected.

In the following, we will show how the hypervisor can
use the BadRAM primitive to manipulate the initial VM
content, while still presenting the guest owner with the
expected launch digest regardless of the used attestation
mechanism.

Replaying the Launch Digest. Our attack comprises an
offline and an online phase, exploiting that after receiving
the VM image, the hypervisor can create an arbitrary amount
of SEV-SNP instances for the image without having to
interact with the guest owner. Figure 7 shows an overview of
the online phase of the attack on IdBlock-based attestation.

In the offline phase, the hypervisor starts the VM with-
out any modifications to the initial memory content and
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captures the encrypted launch digest from the guest context
page, before terminating the VM. As the hypervisor initially
allocates the guest context page before donating it to the
SP, it knows the physical address of the guest context
page. In Figure 7, this would be equal to launching the
requested image without modifications in step ➁, capturing
the ciphertext of the launch digest (LD) field in step ➃
before terminating the launch process early.

In the online phase, the hypervisor donates the same
physical memory page as in the offline phase to be used as
the guest context page. Every time an SEV VM is created,
the SP assigns it a fresh memory encryption key. Thus,
the hypervisor cannot use any of the VM’s ciphertext from
the offline phase for replay attacks. However, the memory
encryption key of the SP itself is only regenerated when the
system reboots. Crucially, the guest context pages of all SEV
VMs are encrypted with the SP’s single memory encryption
key. Since both the physical memory location of the guest
context page and the memory encryption key are the same
between the online and the offline phase, the hypervisor can
replay the ciphertext of the benign launch digest from the
offline phase in the online phase. Thus, after receiving the
requested VM image in step ➀ the hypervisor can make
arbitrary changes in step ➁, as it can simply replay the
previously captured benign launch digest in step ➂ before
finalizing the VM in step ➃, which triggers a check of
the launch digest in step ➄. Due to the replay, the check
succeeds, and the SP marks the VM as runnable in step ➅.
Note that the alternative, VM-triggered attestation procedure
can only take place after step ➅ and is, thus, also rendered
useless by the launch digest replay.

To determine the exact offset of the 48-byte launch
digest inside the encrypted guest context page, we use an
empirical approach and dump the ciphertext of the guest
context page between calls to SNP_LAUNCH_UPDATE.
Next, we compute the difference between these dumps, re-
vealing that only the 64 bytes from offset 0x460 to 0x4A0
change every time. Due to the 16-byte block size of SEV’s
memory encryption, the difference is only 16-byte granular.
We correlate this information with the publicly available
source code of the SP’s firmware [1, sev_rmp.h:226],
indicating that the array for the measurement is not 16-byte
aligned, causing our replay to also overwrite the IMIEn
field as well as parts of the 16-byte GOSVW field [4, Table
6]. However, both fields represent configuration options that
cannot change between capturing and replaying, since we
have to start the SEV-SNP VM with the same configuration
options both times anyway.

End-to-End Attack. We analyze the use case where SEV-
SNP is used together with a disk image, to bring up a fully-
fledged VM, as described in [24], [56], [65], [79]. The disk
image needs to use regular Linux full disk encryption to
ensure the confidentiality and integrity of its content, as
SEV-SNP does not offer any protection for virtual disks. The
VM first boots into a minimal environment that runs a small
server to provide the attestation report to the guest owner and
subsequently establishes a secure communication channel.

TABLE 4. VULNERABILITY OF POPULAR TEES TO BADRAM ATTACKS.

TEE Crypto Read Write Replay Mitigations

SEV-SNP (§4) AES-XEX ✓ ✓ ✓ –
Classic SGX (§5.1) AES-CTR ✓ ✗ ✗ Strong crypto
Scalable SGX (§5.2) AES-XTS ✗ ✗ ✗ Alias check
TDX (§5.3) AES-XTS ✗ ✗ ✗ Alias check

Arm CCA† (§5.4) AES-XEX/
QARMA

Ciphertext access

Design suggests need for alias check

†Only based on design documents as hardware is not yet available.

This minimal environment corresponds to the image that
gets loaded in step ➀ in Figure 7 and thus is protected by the
SEV-SNP. After verifying the report, the guest owner uses
the secure channel to send the disk decryption key to the
VM, which subsequently unlocks the disk and boots into the
rich Linux environment contained inside the now-unlocked
disk.

In our attack, we insert a backdoor in the minimal VM
boot environment to leak the secret disk encryption key
to the hypervisor. After a successful launch digest replay
with BadRAM, the attestation report does not reveal this
malicious modification, and the guest owner sends the disk
encryption key as usual, thereby leaking it to the hypervi-
sor. Using the key, the hypervisor has full read and write
access to the encrypted disk image, allowing for arbitrary
modifications or data leakage. After bootstrapping into the
(now compromised) rich environment, the minimal boot
environment is no longer accessible to the guest owner,
making the attack undetectable. Alternatively, the malicious
code could also be enhanced to delete itself before allowing
the guest owner to log into the VM.

We fully implemented and ran the end-to-end attack
on the AMD1 system, using a single BadRAM memory
module (cf. Table 3). To facilitate the replay of the launch
digest, we modified the Linux kernel on the host system
to ensure that the offline phase and the online phase use
the same physical memory address for the guest context
page. Furthermore, we modified the kernel code that calls
the SNP_LAUNCH_FINISH command of the SP to capture
the launch digest in the offline phase and to replay it in the
online phase.

5. Analyzing DRAM Trust in Popular TEEs

In this section, we extend our analysis to the security
assumptions that Intel’s and Arm’s TEE designs place on the
memory subsystem and discuss whether their assumptions
can be undermined by our BadRAM primitive. Our findings
are summarized in Table 4.

5.1. Classic Intel SGX

Memory Encryption. The original Intel SGX architec-
ture considered the DRAM as entirely untrusted storage,
featuring a dedicated Memory Encryption Engine (MEE)
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Figure 8. Using the BadRAM aliases, an adversary can monitor the EPC
of classic SGX for changes in ciphertexts, revealing the write pattern. As
SGX uses a fresh counter on every write, the ciphertext changes on every
write, independent of the plaintext.

to encrypt and integrity-protect all enclave data stored in
memory [26]. The MEE uses an AES-CTR-based crypto-
graphic scheme that ensures the confidentiality, integrity, and
freshness of the ciphertexts. It features a Merkle tree that
guarantees the freshness of the counter values by storing
the root of the tree in on-chip memory, inaccessible to
malicious DRAM, with a fresh counter value generated on
every memory write. Additionally, a 56-bit Message Authen-
tication Code (MAC) ensures the integrity of the ciphertext.
Therefore, both replayed and manipulated ciphertexts can
be detected, locking the processor upon such violations.

In addition to strong cryptographic memory protection,
SGX also prevents any read and write attempts by privi-
leged software to enclave memory. This is implemented by
reserving a physically contiguous memory range called the
Enclave Page Cache (EPC), early during boot. Afterward,
the hardware can prevent unauthorized accesses via a simple
bounds check on the physical address.

Write Access Patterns. Crucially, BadRAM attackers can
circumvent SGX’s contiguous EPC check, enabling read and
write access to enclave ciphertexts from software. While
ciphertext modifications would be detected by the MEE,
BadRAM attackers may still monitor the ciphertext for
changes as a capable side-channel. Figure 8 shows that,
when the enclave writes to its private memory, the corre-
sponding ciphertext always changes, regardless of whether
the underlying plaintext has changed. This is because the
MEE is explicitly designed to assign a fresh counter on
every write, protecting against the content-based ciphertext
side-channels demonstrated on SEV platforms [50], [53].

Therefore, although the contents of memory accesses
are effectively protected by the MEE, BadRAM adversaries
who monitor relative changes in ciphertext over time can
precisely deduce the location of write operations. As the
CPU always writes back a whole cache line at a time, the
obtained write address pattern has a spatial resolution of 64
bytes, which can be observed at a maximal, instruction-level
temporal granularity using a single-stepping framework like
SGX-Step [74]. This provides a more fine-grained leakage
compared to an adversary that is only able to determinis-
tically monitor page faults [83]. Additionally, in contrast

to cache side channels [59], the obtained write pattern is
deterministic and noiseless.

The sole previous study [49] that showcased DRAM
address leakage on SGX necessitated continuous physical
access and equipment costs reaching $170,000, making it
unfeasible for most adversaries. Notably, however, such a
full interposer-based setup can also reveal the read pattern,
which is not possible with the BadRAM aliasing attack since
reading does not alter the ciphertext.

Evaluation. We experimentally validated that classic SGX
does not contain any mitigations against memory aliases
by successfully booting the Intel1 system with a single
BadRAM memory module (cf. Table 3). We implemented an
elementary enclave that writes to a random offset within a
4096-byte page-aligned buffer. A privileged software adver-
sary monitoring page faults would be unable to distinguish
two writes to different offsets within this buffer as they fall
within the same page. With the BadRAM aliases, however,
we were able to deterministically infer the offset at a 64-
byte, cache line granularity by comparing the ciphertexts in
the EPC before and after the victim wrote to it.

5.2. Scalable SGX

Memory Encryption. The requirement to maintain a dedi-
cated Merkle tree in the classic SGX design does not scale
well to large EPC sizes, prompting Intel to transition to
a new, “Scalable” SGX design for Xeon server proces-
sors [31]. Scalable SGX abandoned the MEE and instead
repurposes Intel Total Memory Encryption (TME).

TME uses AES-XTS to encrypt the entire physical
memory range, but does not offer cryptographic integrity or
replay protection. Thus, an adversary that can write to the
EPC memory range, for instance, through an alias, would be
able to corrupt or replay ciphertexts similar to our attacks
on SEV-SNP. Indeed, similar to SEV, the tweak values used
for AEX-XTS solely depend on the physical address and
do not change during runtime. Thus, adversaries capable of
reading encrypted EPC data would also be able to perform
ciphertext side-channel attacks [50], [53].

Alias Checks. Notably, we found that Scalable SGX
comes with dedicated architectural countermeasures against
BadRAM aliasing attacks [31], [38]. Particularly, Intel dif-
ferentiates between “outside-in” and “inside-in” aliasing.

First, outside-in aliasing refers to the situation where an
EPC page has an alias that itself is not part of the EPC.
To protect against these kinds of attacks, Scalable SGX
repurposes one of the DRAM Error Correcting Code (ECC)
metadata bits as an “ownership” bit to specify whether the
cache line is part of the EPC [31]. If the CPU is not currently
executing an SGX enclave, the memory controller returns
a fixed pattern for read accesses to cache lines that have
the ownership bit set. This mitigates ciphertext side-channel
attacks from software. Writing to EPC memory while the
CPU is not executing an SGX enclave clears the ownership
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bit, which will be detected the next time an enclave tries to
access the corrupted memory location.

Second, inside-in aliasing refers to the situation where an
EPC page has an alias that itself is also part of the EPC. To
protect against these, a trusted code module explicitly checks
the physically contiguous EPC range for aliases before
enabling SGX at boot time. On Xeon CPUs with Scalable
SGX, the EPC can be as large as 512 GB, totaling 1 TB for
a dual-socket system [39]. Initially, this check was part of
SGX’s MCHECK authenticated code module [32]. However,
starting with 4th generation Xeon scalable processors, alias
checking is now handled by a dedicated Alias Checking
Trusted Module (ACTM) [38] that builds on Intel TXT [37]
to run without trusting the BIOS.

Evaluation. We experimentally validated this behavior on
Intel2 (cf. Table 3), where we introduced BadRAM aliases
by incrementing the number of row bits on all DDR4
DIMMs. On this system, the second most significant phys-
ical address bit maps to the unused row address bit and
thus defines the aliases. When configuring a small EPC size
such that there are no inside-in aliases, SGX enclaves could
be instantiated. As specified, reading enclave memory from
the aliases returned a fixed, all-zero value. When increasing
the EPC size in order to create aliases within the EPC, the
system did not boot into the operating system and reported a
system initialization error (code 91). While the error code is
unspecific, it suggests that the inside-in alias check detected
an alias, as reverting to smaller EPC sizes cleared the error.

5.3. Intel TDX

Intel Trusted Domain Extensions (TDX) is Intel’s latest
TEE, moving away from the enclave-based paradigm to
support confidential VMs, similar to AMD SEV, which are
also referred to as Trusted Domains (TDs) [34]. Similar
to SGX on Xeon scalable processors, TDX relies on To-
tal Memory Encryption-Multi-Key (TME-MK) to provide
memory confidentiality by encrypting its contents with AES-
XTS. In contrast to SGX, however, TDX does not come with
the concept of a fixed-size EPC, lifting any artificial limits
on the total amount of memory used for TDs. Instead, TDX
only uses the approach introduced with Scalable SGX to
provide logical integrity protection and to prevent outside-in
aliasing via a dedicated “TD-owner” ECC bit. Additionally,
TDX introduces optional cryptographic integrity protection
by storing a 28-bit MAC in the ECC bits for each cache
line. This MAC is computed over the ciphertext, address-
based tweak, TD-owner bit, and MAC key, and ensures the
integrity of the cache line. If the integrity check fails, the
memory location is marked as “poisoned” to prevent an
attacker from brute-forcing the MAC [40, §16.2.1.1].

To prevent inside-in aliasing, TDX also relies on the
ACTM to ensure that the BIOS configured the system
correctly and that there are no aliases. However, to our
understanding, the whole physical memory now has to be
checked for aliases. As a result, it should not be possible to

enable TDX in the presence of any memory alias, preventing
all BadRAM attacks.

Evaluation. We experimentally verified the alias check
behavior on Intel3 (cf. Table 3). In contrast to the prior
experiment on Intel2 for Scalable SGX, the TDX-enabled
system still booted, but we were unable to instantiate TDX
or SGX when using either a single or multiple BadRAM
modules. From this, we assume that the ACTM does indeed
check the entire physical memory space for aliases. The
different behavior is most likely a refinement in the alias
check handling.

5.4. Arm CCA

Similar to SEV and TDX, Arm CCA is a VM-scoped
TEE, though it is not yet commercially available. Like
the aforementioned TEEs, CCA considers some attacks
on DRAM to be in scope [6], [8] and features memory
encryption as its primary defense. Additionally, the most
critical data structures—belonging to the EL3 monitor that
warrants CCA’s security—receive extra protection [6]. They
are stored either in on-chip memory, inaccessible to an
attacker controlling external memory, or in external memory,
but with additional integrity guarantees. The only exception
is the Granule Protection Table (GPT) [7, §4], which is
stored entirely in external memory and enforces memory
isolation against software attackers, similar to SEV’s RMP.

For memory encryption, CCA recommends AES-XEX
or QARMA, which do not offer cryptographic integrity
protection nor freshness. As a result, Arm CCA could be
susceptible to BadRAM attacks, unless an alias check is
performed similar to Intel’s ACTM check for Scalable SGX
and TDX. While the most critical data structures appear to
be protected against these attacks through on-chip memory,
the GPT and memory belonging to the realm management
monitor and the realms themselves may still be vulnerable.
Thus, as with SEV, both outside-in and inside-in aliasing
may be possible, though we were unable to verify these
claims due to the unavailability of CCA hardware.

6. Discussion and Mitigations

In this section, we discuss the feasibility of BadRAM
attacks that are performed solely in software, without the
need for one-time physical access. Next, we discuss mitiga-
tions and possibly more advanced DRAM attacks that may
impact currently employed countermeasures.

6.1. Software-Only Adversaries

Up to this point, we have assumed an attacker with one-
time physical access to the DIMMs, allowing the attacker
to disable the module’s write protection and overwrite the
contents of the SPD. However, the SPD EEPROM may also
be exposed over the SMBus or SidebandBus, allowing read
and write access to the EEPROM by a privileged software-
based adversary. Additionally, as the initialization of the
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memory controller performed by the BIOS is based on the
reported SPD values, a malicious BIOS may spoof these
values for a similar effect.

SMBus & SidebandBus. The SPD chip is connected to the
rest of the system via the SMBus or SidebandBus for DDR4
and DDR5, respectively. This interface may be exposed
to software, like the decode-dimms utility from Linux’s
i2c-tools that provides comprehensive information on
the connected memory. Performing BadRAM attacks by
leveraging this interface requires the ability to write to the
SPD base parameter section to change the addressing infor-
mation. However, a DIMM may set its SPD write protection
to disable writes to this section. Additionally, some memory
controllers have protections in place that prevent writes to
the SPD chip from software (e.g., through the SPD Write
Disable (SPDWD) bit on the Intel PCH [35]), though some
manufacturers allow this protection to be disabled in the
BIOS, for instance to support on-DIMM RGB lighting [17].

BIOS. The BIOS reads out the SPD contents and config-
ures the system based on the reported values, as shown
in Figure 1. An adversary in control of the BIOS could
change these values before configuring the system. This ef-
fectively enables BadRAM attacks without the requirement
for physical access. However, as the BIOS is a complex,
proprietary component (which might be cryptographically
authenticated [20], [63]), this attack vector is significantly
more complicated than modifying the SPD directly. While
there are some efforts to create open-source firmware, such
as coreboot, they currently do not support the newest TDX
and SEV-SNP platforms.

Spoofing the SPD contents is done in practice, for in-
stance, on devices with soldered memory, such as certain
laptops and smartphones. As these devices do not have a
physical SPD chip, their memory characteristics are stored
in the BIOS image, allowing the BIOS to configure the
system. In case of multiple memory configurations, a jumper
selects the correct SPD contents. Furthermore, in Section 3,
we observed on some of our evaluation platforms that the
BIOS caches SPD data based on the DIMM’s serial number,
providing further evidence of the BIOS’s ability to spoof
SPD data.

6.2. Countermeasures

The key weakness exploited in our BadRAM attacks is
the implicit trust placed on the BIOS to correctly configure
the memory controller. The BIOS, in turn, trusts the infor-
mation it reads from the DIMM’s SPD chip.

Improving SPD Security. To increase the complexity of the
attack, future DRAM generations could consider allowing
permanent write protection on the base configuration blocks
within the SPD. In fact, this was possible up to DDR3 [43],
though not required. Removing the ability to modify the
addressing parameters in the EEPROM requires the attacker
to either physically replace the entire SPD chip, or modify

the part of the BIOS that programs the memory controller,
significantly increasing the complexity of the attack. This
does not prevent attacks, though, as shown in Appendix C.

Validating Memory Layout. A more principled mitigation
is to check the memory configuration during system boot to
ensure there are no aliases. However, as such alias checks
become part of the system’s trusted computing base, the
code must be protected from manipulations, e.g., by the
BIOS, essentially requiring a low-level TEE.

A straightforward way to ensure that there are no aliases
is to iteratively scan the entire DRAM memory space of
each DIMM. However, this requires at least one read and
one write operation to each address, making it impractical
for systems with many or large DIMMs. Instead, each
address bit can be verified separately. For each bit, we can
consider two addresses that only differ in that specific bit.
By writing a random value to the first address, we can
check if this bit is used by reading the second address.
If the read returned the same value we wrote to the first
address, both addresses point to the same physical location,
and the bit we considered is not used by the DIMM. The
memory controller could even use this technique to discover
the DIMM topology without relying on the BIOS or SPD
to provide this information. If we ensure the integrity of the
memory controller’s firmware, this could be one solution to
isolate the alias-checking code from the untrusted system.
However, in the face of a hardware-level attacker, scanning
for aliases is likely susceptible to time-of-check to time-of-
use attacks, as discussed in Section 6.3.

As described in Sections 5.2 and 5.3, Intel has imple-
mented an alias check for Scalable SGX and TDX using
their TXT technology [37], [38]. We experimentally con-
firmed the presence of such alias checks, but did not find
any documentation on the specific implementation and scope
of the employed scanning algorithm.

Strong Cryptography. Using strong cryptographic primi-
tives for memory encryption that provide memory integrity
and freshness almost entirely mitigates the security risks
introduced by memory aliasing. In addition, they can up-
hold their security guarantees against hardware attacks on
external memory without the risk of time-of-check to time-
of-use attacks. However, practical designs often face scal-
ability limitations. While MACs can be used to ensure
data integrity and integrity trees to provide freshness, both
methods introduce memory overheads that scale linearly
with the total amount of protected memory. Additionally,
ensuring freshness requires storing the root of the integrity
tree in on-chip SRAM, which is expensive. Furthermore,
these primitives introduce performance overhead for every
memory access: verifying the integrity of a read requires
traversing the tree and computing the corresponding MACs,
while writes similarly require updating these values. As a
result, the depth of the tree must be limited in practice, con-
straining the amount of protected memory and thus making
large memory sizes impractical. For instance, Classic Intel
SGX—one of the few commercial TEEs providing cryp-
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tographically secure memory integrity protection—supports
only up to 128 MB or 256 MB of protected memory while
incurring a performance overhead of up to 14 % [26].

Protecting large amounts of memory with both strong
cryptography and acceptable overhead is a challenging
research question. Recent academic works provide more
scalable designs by employing skewed [70] or mountable
Merkle trees [23], increasing the arity of the integrity tree by
reducing the counter size [67], [71], dynamically adjusting
the tree’s height and arity [75], and changing the underlying
cryptographic primitives [30]. While these approaches en-
able integrity protection for larger memory sizes, they have
not been adopted by industry. Furthermore, even with strong
integrity and freshness guarantees, attacks on the external
memory may still enable high precision, sub-page access
pattern leakage, as discussed in Section 5.1. Thus, software
still needs to follow oblivious, constant-time programming
paradigms to avoid such leakages.

6.3. Unverified Trust in DRAM Hardware

The analysis in this paper shows that most recent TEEs
place some degree of trust in the memory system and
DRAM without verifying it. Partial exceptions are Intel
Scalable SGX and TDX, which check for memory alias-
ing at boot time, detecting permanent manipulations to the
DRAM addressing. One example of this unverified trust is
the way Intel, AMD, and Arm implement replay protection
for their VM-based TEEs. Instead of using cryptographic
freshness to prevent replay attacks, they use an access rights
mechanism to prevent an attacker from writing to protected
memory. This protection breaks if the attacker is able to
modify the DRAM content via a channel that is not subject
to the access control mechanisms.

The SPD manipulation from this paper essentially shows
a data-driven attack against an otherwise benign BIOS.
However, another attack angle would be a full DRAM inter-
poser [49] or a DRAM module with manipulated hardware
that, e.g., allows arbitrary read and write to the memory
content via a second interface that is only available to
the attacker. Such a hardware attacker could easily hide
any manipulations from a boot time alias check, like the
one performed by Intel. Hopkins et al. [29] discuss such
modified memory modules for DDR3 and also implemented
an FGPA-based prototype that attaches to the DRAM slot
and acts as an interposer. It allows the attacker to redi-
rect memory accesses to protected regions. We found one
company that sells memory modules that come with data
processing units, allowing to execute custom code directly
on the DIMM [73]. However, their DIMM is currently
restricted to a few mainboards, none of which support TDX.

7. Related Work

We start this section by reviewing existing work on
memory aliasing attacks. Next, we discuss existing attacks
on AMD SEV-SNP and how BadRAM re-enables some

attacks previously mitigated by SEV-SNP. Finally, we survey
hardware attacks on TEEs.

Memory Aliasing. Breuer et al. consider memory aliasing in
a security context [10] and define two types: “software alias-
ing,” where multiple logical addresses map to one physical
address, and “hardware aliasing,” where multiple physical
addresses map to one logical address. They observe that the
latter case can, e.g., arise when the number of address lines
exceeds the bit width of the CPU arithmetic and develop
methods to “certify” the safety of machine code in this
scenario. More recently, Intel contributed a vulnerability
class, “CWE-1257: Improper Access Control Applied to
Mirrored or Aliased Memory Regions” [58], to MITRE’s
Common Weakness Enumeration list.

In research on virtualization security, Wojtczuk [82]
speculated in 2016 that malicious memory aliasing may be
induced by modifying the contents of a DIMM’s SPD but
did not further evaluate this attack surface. Furthermore,
they only discuss software access to the SPD, which does
not work if the SPD is locked. However, as shown in Table 7,
most manufacturers seem to lock the SPD. In BadRAM, we
show how to unlock the SPD chip with a low-cost setup
and explore the resulting attacks in depth. For the opposite
case of software aliasing, Guanciale et al. show that virtual
aliases with different attributes can be used to construct
cache-based side-channel attacks [25].

Software Attacks on AMD SEV. Initial attacks [28], [77]
exploit that, prior to SEV-ES, the unencrypted Virtual Ma-
chine Control Block (VMCB) allowed read and write access
to the VM’s register file during context switches.

A long line of attacks [28], [60], [61], [62] exploits the
hypervisor’s control over nested page tables, breaking the in-
tegrity of the VM’s memory layout. The SEVered attack [61]
uses this attack primitive to trick services inside the VM to
encrypt and decrypt arbitrary data. SEV-SNP was designed
to mitigate this class of attacks by introducing the RMP
that provides integrity to the VM’s memory layout. With
BadRAM, we break the RMP, re-enabling these attacks.

In [22], [80], the authors unveil the details of SEV’s
tweaked encryption mode, showing flaws that allow reverse
engineering the tweak values. Exploiting the known tweaks,
[52], [80] show that by adjusting for the tweak differences,
moving ciphertexts in memory allows building mechanisms
to encrypt and decrypt arbitrary data. All SEV-SNP-enabled
CPUs use strong tweak values, mitigating these attacks.
Buhren et al. [11] exploit the missing integrity protection
to perform fault attacks by flipping ciphertext bits, which
is mitigated with SEV-SNP by the RMP’s write protection.
Our BadRAM primitive re-enables this attack. Li et al. [50],
[53] introduce ciphertext side-channel attacks, showing that
the boot-time fixed tweak values used by SEV allow leaking
access patterns of the executing code. This attack is not
mitigated on SEV-SNP. Starting with revision 1.55 from
September 2023, the SEV-SNP spec [4] mentions a “cipher-
text hiding” feature but does not provide further details.
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Schlüter et al. [68], [69] exploit the hypervisor’s ability
to inject unexpected interrupts. In combination with insuf-
ficient sanitization by the Linux kernel running in the VM,
they are able to change the VM’s register values, allowing
them to eventually read/write memory and execute arbitrary
code. While SEV-SNP does provide additional hardware
features to mitigate these attacks, there is currently no soft-
ware support. Wilke et al. [81] show that the external APIC
timer interrupt can be used to single-step SEV-SNP VMs,
enhancing the resolution of side-channel attacks. There is
no mitigation for SEV-SNP. Single-stepping is also used
by [69], [85]. Cachewarp [85] exploits a microcode bug to
drop cache write-backs, which has been fixed by an update.
CrossLine [51] exploits improper ASID checks prior to SNP.

In summary, SEV-SNP is currently vulnerable to the
following software attacks: interrupt injection [68], [69],
ciphertext side-channel [50], [53], and single-stepping [81].
Using the BadRAM primitive from this paper, we re-enable
fault attacks [11] as well as SEVered [61], [62] attacks,
essentially downgrading SEV-SNP back to SEV-ES. With
the attack on the attestation presented in this paper, we break
all trust in the SEV-SNP ecosystem.

Physical Attacks on DRAM and TEEs. An attacker with
physical access to the CPU can, for example, manipulate the
CPU voltage, which may introduce faults within the code
running on the system [9]. The VoltPillager and PMFault
attacks show how an attacker can inject faults into SGX
enclaves by sending packets on the various voltage regulator
interfaces used on modern Intel CPUs [14], [15]. Similarly,
Buhren et al. glitch the AMD Secure Processor over the
same interface to break the confidentiality and attestation
features of SEV-SNP [12], [13].

For DRAM specifically, Hopkins et al. [29] present a
DDR3 interposer that remaps attacker-controlled addresses
to protected ones when inserted between a DIMM and the
CPU. They discuss placing the interposer directly on the
DIMM’s IC but opt for an FPGA-based implementation for
their prototype that only supports DDR3 up to 800 MHz.
Similarly, Lee et al. use a commercial interposer, with a
purchase price of $170,000, to capture the addresses on the
DRAM bus [49]. While SGX encrypts the EPC contents,
it does not protect the addresses. Their attack, dubbed
Membuster, uses the captured access pattern as a side-
channel to uncover secrets in non-constant-time code. On
simpler, embedded systems, merely shorting or connecting
an address line with tweezers or a sewing needle may,
in certain cases, suffice to overcome security functionality,
such as the memory protection in the Nintendo Wii [78] or
the boot process of an embedded Linux system [21].

In contrast to BadRAM, the attacks from this section
require attaching additional physical hardware to the system,
limiting their applicability, e.g., in data centers with strict
physical access checks and inspections.

8. Conclusion

In this paper, we presented a novel primitive that chal-
lenges the notion in modern TEEs that scalable memory
encryption in combination with software-based access con-
trol suffices to provide integrity guarantees against untrusted
DRAM. While commonly assumed to require expensive
equipment and extensive physical modifications, we showed
how integrity guarantees can be practically invalidated using
off-the-shelf components for approximately $10 and one-
time physical access to the DRAM module. To this end, we
modified the DIMM’s SPD data to create aliases in the phys-
ical address space that can effectively circumvent software-
based access restrictions. Moreover, incorrectly configured
DIMMs may even enable software-only attacks.

We demonstrated how the BadRAM primitive can be
used to invalidate the newly introduced integrity guaran-
tees provided by AMD SEV-SNP, breaking all trust by
replaying critical attestation reports in an end-to-end attack.
Additionally, we analyzed the boot time countermeasures
baked into Intel’s Scalable SGX and TDX to fend off
aliasing attacks. Since our BadRAM primitive is generic,
we argue that such countermeasures should be considered
when designing a system against untrusted DRAM. While
advanced hardware-level attacks could potentially circum-
vent the currently used countermeasures, further research
is required to judge whether they can be carried out in an
impactful attacker model.
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TABLE 5. DIMM CONNECTIONS TO INTERFACE WITH THE SPD ON
DDR4 AND DDR5.

DDR5 DDR5
Pin DDR4 (UDIMM & SODIMM) (RDIMM)

SDA 285 5 5
SCL 141 4 4
Addressing 139, 140, 238 148 148
3.3 V in 284 151 3
5 V in – 1 –
Vss 283 6 6

TABLE 6. BILL OF MATERIALS FOR THE DDR4/DDR5 SETUP.

Component Cost [$]

Raspberry Pi Pico 5
DDR4/DDR5 socket 1–5 each
Pull-up resistors <0.1
9 V battery† 2
†Only for unlocking DDR4.

Appendix A.
AMD Response

We include AMD’s statement in response to our respon-
sible disclosure below:

AMD’s public SEV-SNP whitepaper states inva-
sive physical attacks are out-of-scope. However,
due to the low cost of this physical attack, and the
relative ease of implementing a mitigation, AMD
has chosen to pursue a mitigation to improve
customer security.
To mitigate the vulnerability described in CVE-
2024-21944, AMD is adding a basic assurance
test to the boot process to ensure that DRAM
address aliasing attack cannot be done using SPD
spoofing. AMD Secure Boot loader firmware will
measure the DRAM’s response to address bits and
take action to prevent SPD spoofing if the results
don’t match SPD address bit settings.
AMD Firmware rollout has a complex software
supply chain involving IBV, ODM/OEM and
cloud providers. This is further complicated when
a firmware fix requires system reboot. The rollout
process will take some time for AMD to qualify
the firmware update, which will then be released
into the AMD Platform Initialization (PI) package
for integration into customer BIOS.

Appendix B.
SPD Setup

The I2C connections to the SPD EEPROM are exposed
on the DIMM. When installed in a system, these connections
are used to connect to the SMBus or SidebandBus. However,
they can also be used in an offline setup to access the
EEPROM with a microcontroller. Table 5 provides the pin

mapping for DDR4 and DDR5 to interface with the chip.
Note that DDR5 requires different connections for RDIMMs
and UDIMMs, as they operate at different voltages.

To modify the SPD contents, we use a Raspberry Pi
Pico, which we connect to an additional DIMM socket to
avoid soldering to the module’s edge connectors directly.
Note that these sockets are keyed differently for DDR4 and
DDR5, as well as for DDR5 RDIMMs and DDR5 UDIMMs.
Figure 2 shows this setup with a DDR5 RDIMM connected
to a Raspberry Pi Pico. Table 6 provides the bill of materials
and estimated component cost, totaling around $10.

When connecting the addressing pins to ground, the
EEPROM will be assigned I2C peripheral address 0x50.
Any write protection on DDR4 can be cleared by connecting
SA0 (pin 139) to VHV (i.e., 7–10 V) and issuing the Clear all
Write Protection (CWP) command by writing to peripheral
address 0x33 [44]. For DDR5, connecting HSA (pin 148)
to ground allows modifications to be made to MR12 and
MR13, the registers holding the protection status [46] (cf.
Figure 3). In both cases, these changes are persistent.

Appendix C.
BadRAM attacks on DDR3

While we mainly considered attacks on DDR4 and
DDR5 in this paper, the BadRAM primitive is, in principle,
also applicable to older DDR generations as they all use
the SPD to store their topology information. These older
generations, however, do allow the manufacturer to set Per-
manent Software Write Protection (PSWP) to the SPD [43].
For DIMMs with this permanent protection set, performing
BadRAM attacks would require either physically replacing
the SPD chip or performing the attacks through the BIOS, as
discussed in Section 6.1. Specifically for DDR3, the required
modifications to the SPD content are identical to those
required for DDR4, as the addressing encoding and CRC
location did not change. The only notable difference is that
DDR3 only supports up to 16 row address bits, compared to
the 18 bits for DDR4 and DDR5. Additionally, the location
of the module’s serial number for DDR3 is stored in bytes
122 through 125, which may be required to be modified if
the BIOS caches the SPD contents.

We evaluated the DDR3 BadRAM primitive on a
Dell OptiPlex 990 DT with a CN-0VNP2H mainboard
and an Intel Core i7-2600 with a single DDR3 UDIMM
(HMT351U6BFR8C-H9) installed. We physically removed
the SPD chip from the DDR3 DIMM as it had PSWP (cf.
Table 9) and connected the exposed pads to a Raspberry
Pi 3 Model B+, as shown in Figures 9 and 10. We then
configured the I2C interface of the Raspberry Pi to emulate
an SPD EEPROM with modified addressing information to
make the DIMM appear twice the size. On this system, the
introduced ghost bit corresponded to the most significant
physical address bit. This experiment shows that older DDR
generations are also vulnerable to BadRAM attacks.
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TABLE 7. WRITE PROTECTION STATUS AND ADDRESSING INFORMATION FOR VARIOUS DDR4 MODULES.

Write Protection Addressing Bits

Manufacturer Type Serial Number WP0 WP1 WP2 WP3 Rank Bank Row Col. Capacity [GB]

Corsair1 UDIMM CMV4GX4M1A2133C15 ✗ ✗ – – 0 4 15 10 4
Corsair2 UDIMM CMK16GX4M2E3200C16 ✗ ✗ ✗ ✗ 0 4 16 10 8
Crucial1 SODIMM CT16G4SFD824A.M16FE ✓ ✓ ✓ ✗ 1 4 16 10 16
Kingston1 RDIMM KSM32RS8/8HDR ✓ ✓ ✗ ✗ 0 4 16 10 8
Kingston2 RDIMM KSM32RS8L/16MFR ✓ ✓ ✗ ✗ 0 4 17 10 16
Kingston3 RDIMM KTH-PL432/16G ✓ ✓ ✗ ✗ 0 4 17 10 16
Kingston4 UDIMM KVR26N19S8/8 ✓ ✓ – – 0 4 16 10 8
Micron1 RDIMM MTA36ASF4G72PZ-3G2R1 ✓ ✓ ✓ ✗ 1 4 17 10 32
Micron2 RDIMM MTA36ASF8G72PZ-3G2F1 ✓ ✓ ✓ ✗ 1 4 18 10 64
Micron3 RDIMM MTA9ASF1G72PZ-3G2E2 ✓ ✓ – – 0 4 16 10 8
Micron4 RDIMM MTA18ASF2G72PZ-2G9J3R ✓ ✓ ✓ ✗ 0 4 17 10 16
Samsung1 UDIMM M378A2K43DB1-CTD ✓ ✓ ✗ ✗ 1 4 16 10 16
Samsung2 SODIMM M471A2K43EB1-CWE ✓ ✓ ✗ ✗ 1 4 16 10 16
SK hynix1 RDIMM HMA82GR7DJR4N-XN ✓ ✓ ✗ ✗ 0 4 17 10 16
SK hynix2 RDIMM HMAA4GR7AJR8N-XN ✓ ✓ – – 1 4 17 10 32
SK hynix3 UDIMM HMA41GU6AFR8N-TF ✓ ✓ ✗ ✗ 1 4 15 10 8
SK hynix4 UDIMM HMA82GU6JJR8N-VK ✓ ✓ ✗ ✗ 1 4 16 10 16
SK hynix5 SODIMM HMA41GS6AFR8N-TF ✓ ✓ ✗ ✗ 1 4 15 10 8

TABLE 8. WRITE PROTECTION STATUS AND ADDRESSING INFORMATION FOR VARIOUS DDR5 MODULES.

Write Protection Addressing Bits

Manufacturer Type Serial Number MR12 MR13 Rank Bank Row Col. Capacity [GB]

Kingston5 RDIMM KF548R36RB-16 0xff 0x3c 0 5 16 10 16
Kingston6 RDIMM KSM48R40BS8KMM-16HMR 0xff 0x00 0 5 16 10 16
Kingston7 RDIMM KSM48R40BD8KMM-32HMR 0xff 0x00 1 5 16 10 32
Samsung3 RDIMM M321R2GA3BB6-CQK 0xff 0x01 0 5 16 10 16
SK hynix6 RDIMM HMCG78MEBRA115N 0xff 0x01 0 5 16 10 16
SK hynix7 UDIMM HMCG78AEBUA084N 0xff 0x01 0 5 16 10 16

TABLE 9. WRITE PROTECTION STATUS AND ADDRESSING INFORMATION FOR THE DDR3 MODULE USED IN APPENDIX C.

Addressing Bits

Manufacturer Type Serial Number SWP PSWP Rank Bank Row Col. Capacity [GB]

SK hynix8 UDIMM HMT351U6BFR8C-H9 – ✓ 1 3 15 10 4

Figure 9. DDR3 setup to perform BadRAM attacks. The DDR3 DIMM
has its SPD chip removed and is instead connected to a Raspberry Pi. The
additional wires are connected to the power button, but are not required
for the attack.

Figure 10. Closeup of the removed SPD chip from the DIMM in Figure 9.
Note that some connections are made to the vias on the backside.
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Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper demonstrates an attack that exploits the lack
of authentication and protection of DIMM information that
is stored and retrieved via the Serial Presence Detect in-
terface to bypass the memory integrity guarantees of AMD
SEV-SNP. The paper shows how manipulation of the infor-
mation (via reprogramming through the SPD interface) can
result in an incorrect view of available memory leading to
memory aliasing.

D.2. Scientific Contributions

• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field
• Independent Confirmation of Important Results with

Limited Prior Research
• Establishes a New Research Direction
• Creates a New Tool to Enable Future Science

D.3. Reasons for Acceptance

1) This paper identifies an impactful vulnerability.
This paper demonstrates an architectural gap in
AMD SEV-SNP that allows bypassing memory in-
tegrity protections for confidential VMs. The paper
exploits the SPD interface available on DIMMs
that allow re-programming of DIMM metadata (in-
compliance with the JEDEC standard) to present
the host SoC with a ‘bad’ view of memory that
leads to memory aliasing. The memory aliasing
is then used to manipulate the RMP table that
holds security metadata for individual memory
pages and thereby, bypass the protections affered
by the RMP. The paper demonstrates and end-to-
end attack where the measurement in the attestation
doesn’t match the measurement of the actual mem-
ory content of a confidential VM.

2) This paper provides a valuable step forward in an
established field and independently confirms results
with limited prior research. Memory aliasing at-
tacks by manipulation of DIMM metadata have
been known for a while. Intel SGX and TDX pro-
vide protections against such attacks through a pro-
prietary set of checks (whose details are not public).
This paper actually confirms that the checks im-
plemented by these two technologies are effective
against the attacks outlined in the paper which

provides for the first time, independent verification
of the security claims. The paper also explores
for the first time, the SPD interface, requirements
underlying the SPD interface that allow reprogram-
ming of DIMM metadata by the JEDEC standard
as well as effects of manipulating the DIMM meta-
data via the SPD interface. Since there are no
existing mechanisms/standardized ways to protect
this DIMM metadata, the identified vulnerabilities
will need a workaround (just like TDX and SGX
do). The paper also demonstrates the viability of
affecting the security posture of a TEE whose trust
boundary is confined to the SoC via corruption of a
system/platform component that is likely vulnerable
to supply chain attacks.

3) This paper establishes a new research direction. Ex-
isting countermeasures to the outlined attacks have
been proprietary (and emerging ones will likely
also be so) to detect memory aliasing. Changing
DIMM standards to include more systematic coun-
termeasures will likely have a long tail. So, this
paper highlights the need to devise mechanisms
that can work with existing DIMM standards in
the public domain—ones that lend themselves to
systematic analysis instead of a heuristic that relies
on randomly checking for aliases but still scale for
use in cloud settings.

4) The paper creates a new tool for future science: The
authors are committed to making their attack frame-
work available for other researchers to explore other
offensive and defensive countermeasures.
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